|
15: |
|
MINUS(n__0,Y) |
→ 0# |
16: |
|
MINUS(n__s(X),n__s(Y)) |
→ MINUS(activate(X),activate(Y)) |
17: |
|
MINUS(n__s(X),n__s(Y)) |
→ ACTIVATE(X) |
18: |
|
MINUS(n__s(X),n__s(Y)) |
→ ACTIVATE(Y) |
19: |
|
GEQ(n__s(X),n__s(Y)) |
→ GEQ(activate(X),activate(Y)) |
20: |
|
GEQ(n__s(X),n__s(Y)) |
→ ACTIVATE(X) |
21: |
|
GEQ(n__s(X),n__s(Y)) |
→ ACTIVATE(Y) |
22: |
|
DIV(s(X),n__s(Y)) |
→ IF(geq(X,activate(Y)),n__s(div(minus(X,activate(Y)),n__s(activate(Y)))),n__0) |
23: |
|
DIV(s(X),n__s(Y)) |
→ GEQ(X,activate(Y)) |
24: |
|
DIV(s(X),n__s(Y)) |
→ DIV(minus(X,activate(Y)),n__s(activate(Y))) |
25: |
|
DIV(s(X),n__s(Y)) |
→ MINUS(X,activate(Y)) |
26: |
|
DIV(s(X),n__s(Y)) |
→ ACTIVATE(Y) |
27: |
|
IF(true,X,Y) |
→ ACTIVATE(X) |
28: |
|
IF(false,X,Y) |
→ ACTIVATE(Y) |
29: |
|
ACTIVATE(n__0) |
→ 0# |
30: |
|
ACTIVATE(n__s(X)) |
→ S(X) |
|
The approximated dependency graph contains 3 SCCs:
{19},
{16}
and {24}.